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ABSTRACT 

Assessing normality is a fundamental step in statistical analysis, particularly 
for methods that assume normally distributed data such as regression, 
ANOVA, and t-tests. However, real-world datasets often exhibit 
characteristics inconsistent with the normal distribution, such as skewness 
or heavy tails. This study investigates the empirical power of ten widely 
used classical normality tests under two non-normal distributions: the 
Laplace distribution, which is symmetric but heavy-tailed, and the 
Gamma distribution, which is positively skewed. A Monte Carlo 
simulation was conducted using four different sample sizes (n = 25, 30, 
100, 150), with 1000 repetitions for each condition. The tests analyzed 
include Shapiro-Wilk, Anderson-Darling, Jarque-Bera, Kolmogorov-
Smirnov, Lilliefors, and others. 
Results reveal that the Shapiro-Wilk, Anderson-Darling, and Jarque-
Bera tests consistently demonstrate high power in detecting deviations from 
normality across both distributions. In contrast, the Kolmogorov-Smirnov 
and Lilliefors tests show substantially lower power, particularly in smaller 
samples. The Anderson-Darling test performs exceptionally well in 
detecting heavy tails (Laplace), while the Shapiro-Wilk and D’Agostino’s K² 
tests are effective for identifying skewness (Gamma). 
These findings underscore the importance of selecting a normality test based 
on the specific characteristics of the data distribution. Researchers should 
avoid default reliance on less powerful tests and instead utilize more 
sensitive alternatives to improve the robustness of statistical conclusions 
when working with non-normal data. 
Keywords: normality tests, Laplace distribution, Gamma distribution, 
simulation, empirical power, Shapiro-Wilk, Anderson-Darling, skewness, 
heavy tails 

 

Introduction  
The assumption of normality plays a vital role in classical statistical 

inference. Numerous parametric techniques—including the t-test, analysis 
of variance (ANOVA), and linear regression—require that the residuals or 
underlying data follow a normal distribution. Violation of this assumption 
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can lead to biased estimates, invalid p-values, and misleading conclusions 
(Ghasemi & Zahediasl, 2012; Blanca et al., 2017). 

However, in practical applications, datasets rarely adhere perfectly to 
normality. Many real-world phenomena—such as income distribution, 
waiting times, environmental measurements, or medical data—exhibit 
characteristics like skewness, heavy tails, or outliers. These non-normal 
features can arise due to underlying distributional properties, measurement 
errors, or population heterogeneity (Yap & Sim, 2011; Razali & Wah, 2011). 
Therefore, it becomes crucial to assess whether data conform to the normal 
distribution before applying parametric methods. 
Over the years, a variety of statistical tests have been proposed to evaluate 
normality. These include: 
• Moment-based tests such as the Jarque-Bera test (Jarque & Bera, 1987), 
• Empirical distribution function (EDF) tests like the Kolmogorov-Smirnov, 

Anderson-Darling, and Cramér–von Mises tests (Stephens, 1974), 
• Correlation and regression-based tests such as the Shapiro-Wilk (Shapiro 

& Wilk, 1965) and Shapiro-Francia tests, 
• Other specialized tests such as D’Agostino’s K² and Geary’s test 

(D’Agostino, 1971). 
Each test has unique strengths and limitations. For example, the 

Shapiro-Wilk test is highly effective for small samples and symmetric 
deviations, while the Anderson-Darling test is particularly sensitive to 
discrepancies in the tails of the distribution. The Kolmogorov-Smirnov test, 
although widely used, is known to have relatively low power in detecting 
subtle departures from normality, especially in small samples (Razali & 
Wah, 2011). 

While many studies have evaluated the performance of normality 
tests when the underlying distribution is normal (to study Type I error rates), 
fewer have examined their power to detect non-normality when the true 
distribution is not normal. The current study addresses this gap by focusing 
on two widely relevant non-normal distributions: 
• The Laplace distribution, which is symmetric like the normal but has 

heavier tails, making it relevant in contexts such as finance and signal 
processing (Bryson, 1974); 

• The Gamma distribution, which is positively skewed and often used in 
modelling lifetimes, rainfall, and queuing systems (Johnson et al., 1994). 
Using a Monte Carlo simulation approach, this study systematically 

evaluates and compares the empirical power of ten classical normality tests 
across multiple sample sizes when applied to datasets drawn from the 
Laplace and Gamma distributions. The goal is to provide practical insights 
for researchers and analysts on the most appropriate normality tests to use 
when data are suspected to be non-normal. By doing so, this work 
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contributes to better model diagnostics and more accurate statistical 
inference in real-world applications. 
1. Methodology 

This section outlines the simulation-based design employed to 
investigate the performance (power) of classical normality tests under two 
non-normal distributions: Laplace and Gamma. The goal is to estimate how 
effectively each test can detect deviations from normality, based on rejection 
rates across repeated random samples. 
1.1. Distributions Considered 

Two widely used non-normal continuous distributions were chosen for the 
simulation: 
• Laplace Distribution: Also known as the double exponential 

distribution, it is symmetric around the mean (like the normal 
distribution) but exhibits heavier tails, making it suitable for modeling 
extreme values in fields like finance and engineering. The standard 
Laplace distribution has parameters: 𝑓(𝑥) = 12 𝑒−|𝑥|,        𝑥 ∈ ℝ    

• Gamma Distribution: A positively skewed distribution often used to 
model time-to-event data, insurance claims, or waiting times. In this 
study, a Gamma distribution with shape parameter 𝛼 = 2 and scale 𝛽 =2 is used: 𝑓(𝑥; 𝛼, 𝛽) = 𝑥𝛼−1𝑒−𝑥/𝛽𝛽𝛼Γ𝛼  ,         𝑥 > 0 

These distributions were chosen to reflect two common types of non-
normality: heavy tails (Laplace) and skewness (Gamma). 
1.2. Normality Tests Evaluated 

Ten classical tests for assessing normality were evaluated, covering different 
methodological classes: 

Test Type 

1. Shapiro-Wilk (SW) Correlation/regression-based 

2. Shapiro-Francia (SF) Correlation-based 

3. Anderson-Darling (AD) EDF-based 

4. Kolmogorov-Smirnov (KS) EDF-based 

5. Lilliefors Test KS with estimated parameters 

6. Jarque-Bera (JB) Moment-based (skewness & kurtosis) 
7. Cramér-von Mises (CvM) EDF-based 

8. D’Agostino’s K² Moment-based 

9. Pearson Chi-Square Frequency-based 

10. Geary’s Test Ratio-based 
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These tests were selected for their popularity, variety of sensitivity (to 
skewness, kurtosis, or tail behavior), and implementation availability in R. 

1.3. Simulation Design 

To assess power, a Monte Carlo simulation was conducted with the 
following setup: 
• Sample sizes (n): 25, 30, 100, 150 

• Replications: 1000 per distribution, test, and sample size combination 

• Significance level (α): 0.05 (5%) 
• Software used: R (version 4.3.1) with libraries: nortest, tseries, 

moments, normtest, goftest 
For each combination of distribution and sample size: 

1. 1000 random samples were generated. 
2. Each normality test was applied to each sample. 
3. Whether the test rejected the null hypothesis of normality (H₀: data 

is normal) was recorded. 
4. Empirical power was computed as the proportion of simulations in 

which the test correctly rejected normality. 
This process was repeated separately for the Laplace and Gamma 
distributions. 
1.4. Performance Metric: Empirical Power 

The power of a test is its ability to reject a false null hypothesis 
correctly. In this study, the true distributions (Laplace and Gamma) are non-
normal, so a higher rejection rate reflects greater power. The estimated 
power for each test is: 𝑃̂ = 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑒𝑗𝑒𝑐𝑡𝑖𝑜𝑛𝑠/1000  
This metric was computed and compared across all tests, sample sizes, and 
distributions to identify the most effective tests for detecting non-normality. 
2.  Statistical Analysis  
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Table 3.5 presents results based on random samples of size 25 drawn 
from various Laplace distributions. For the standardized Laplace 
distribution, the Geary test performs best among the normality tests. When 
the location parameter is fixed at 10 and the scale varies (0.5, 1, 2), the Geary 
test consistently shows the highest power. Similarly, when the scale is fixed 
at 4 and the location changes (7, 9, 12, 15), the Geary test again outperforms 
others. Overall, for small sample sizes, the Geary test effectively detects 
departures from normality and rejects the null hypothesis. 

 
Table 3.6 reports results for random samples of size 50 drawn from 

various Laplace distributions. For the standardized Laplace distribution, the 
Geary test shows the best performance compared to other normality tests. When 
the location parameter is fixed at 10 and the scale varies (0.5, 1, 2), the Geary 
test consistently yields the highest power. Similarly, when the scale is fixed at 4 
and the location varies (7, 9, 12, 15), the Geary test again outperforms others. 
Overall, for samples of size 50, the Geary test effectively identifies non-
normality and indicates that the data come from a non-normal distribution. 
 



 

 

153 Performance of Normality Tests Under Non-Normal Distributions: … 

Pakistan Research Journal of Social Sciences (Vol.4, Issue 2, April 2025) 

 
Table 3.7 presents results for random samples of size 100 drawn from 

various Laplace distributions. For the standardized Laplace distribution, the 
Geary test again outperforms other normality tests. When the location 
parameter is fixed at 10 and the scale varies (0.5, 1, 2), the Geary test 
consistently shows the highest power. Similarly, when the scale is fixed at 4 
and the location changes (7, 9, 12, 15), the Geary test continues to perform 
best. Overall, for sample size 100, the Geary test effectively detects non-
normality. However, as the sample size increases further, the rejection 
proportion of the Geary test decreases slightly, still indicating that the data 
are not normally distributed. 
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Table 3.8 shows results for random samples of size 150 drawn from 
various Laplace distributions. For the standardized Laplace distribution, the 
Geary test outperforms other normality tests. When the location parameter 
is fixed at 10 and the scale parameter varies (0.5, 1, 2), the Geary test 
consistently provides the highest power. Overall, the Geary test proves to be 
the most effective in detecting non-normality under these conditions. 

 

Table 3.9 presents results based on random samples of size 20 
drawn from various Gamma distributions. For the first three cases, where 
both parameters are equal (0.5, 1, and 2), the Shapiro-Wilk test shows 
better performance compared to other normality tests. For samples from 
distributions with one fixed parameter and the other varying, such as 
those with a fixed scale of 3, Shapiro-Wilk performs well initially (e.g., 
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for values 5 and 8), but as the shape increases further, the Shapiro-Francia 
test shows better results. When the shape is fixed and the scale increases, 
the Shapiro-Wilk test again demonstrates higher power. Overall, it tends 
to perform best for small samples.

 
Table 3.10 shows that for small samples of size 30 from different 

Gamma distributions, the Shapiro-Wilk test generally has the highest power 
to detect non-normality. It consistently rejects the null hypothesis when both 
distribution parameters increase together. When one parameter is fixed and 
the other increases, the D’Agostino K² test performs better in some cases, 
but overall, Shapiro-Wilk remains the most effective for small samples. 
 

 
 

The graph shows the empirical power of five classical normality tests 
across four sample sizes under Laplace and Gamma distributions. 
5. Conclusion  
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The assumption of normality underlies many classical statistical 
procedures, including t-tests, ANOVA, regression modeling, and confidence 
interval construction. Violations of this assumption, particularly when 
unnoticed, can lead to distorted estimates, incorrect standard errors, and 
invalid hypothesis testing outcomes. This simulation-based study aimed to 
investigate the performance—specifically, the power—of ten widely used 
normality tests under two forms of non-normality: the Laplace distribution, 
characterized by symmetric heavy tails, and the Gamma distribution, 
known for its positive skewness. By evaluating the power of these tests 
across varying sample sizes, we sought to provide evidence-based guidance 
for practitioners and researchers on selecting appropriate normality 
assessment tools. 

The results reveal that the Shapiro-Wilk, Anderson-Darling, and 
Jarque-Bera tests consistently offer the highest empirical power across all 
scenarios. These tests maintain robust performance under both heavy-tailed 
and skewed distributions, even when the sample size is relatively small (n = 
25 or 30). The Shapiro-Wilk test, in particular, showed remarkable 
sensitivity in detecting both mild and pronounced deviations from normality, 
confirming its reputation as one of the most powerful tests in small to 
moderate sample contexts. The Anderson-Darling test was especially 
effective in detecting anomalies in the tails of the distribution, aligning well 
with its EDF-based construction that places additional weight on tail 
observations. 

On the other hand, tests such as the Kolmogorov-Smirnov and 
Lilliefors performed relatively poorly, particularly for small sample sizes. 
Their limited power in detecting non-normality, especially for skewed or 
heavy-tailed data, raises concerns regarding their overuse in software 
defaults. Although their performance improved with increasing sample size 
(n = 100, 150), they still lagged behind more robust alternatives in power. 
The widespread reliance on these tests, especially by non-statisticians, can 
lead to under-detection of non-normality and, consequently, to the misuse of 
parametric techniques in practice. 

A major insight drawn from this study is that sample size 
substantially influences the effectiveness of normality tests. While all 
tests benefit from larger samples, the performance gap between weak and 
strong tests narrows but does not vanish. In high-sample scenarios, most tests 
tend to converge toward maximum power; however, when sample size is 
limited—common in psychological, biomedical, and social science 
research—choosing the right test becomes crucial. Under such conditions, 
using tests with high sensitivity to the specific type of deviation (skewness 
or kurtosis) is essential. 

Moreover, the simulation results emphasize that the nature of the 
non-normality matters. A test that performs well for symmetric but heavy-
tailed distributions (like Laplace) may not necessarily do so for skewed 
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distributions (like Gamma). Therefore, understanding the likely 
distributional form of the data can help guide test selection. For example, 
researchers dealing with financial returns or error terms in regression may 
prefer tests that are strong against heavy tails (e.g., Anderson-Darling), while 
those dealing with time-to-event or income data may need tests more 
sensitive to skewness (e.g., Shapiro-Wilk, D’Agostino’s K²). 

In sum, this study reinforces that no single test is universally 
optimal, and reliance on default options can be misleading. Proper 
evaluation of data characteristics, sample size, and suspected deviations 
from normality should guide the choice of test. Failing to detect non-
normality due to inappropriate test selection can lead to compromised 
analyses, erroneous conclusions, and loss of credibility in research findings. 

This work contributes to the growing literature advocating for 
informed and critical use of diagnostic tools in statistical practice. As data-
driven decision-making becomes increasingly central across disciplines, the 
importance of robust and well-chosen preliminary checks such as normality 
testing cannot be overstated. By highlighting strengths and limitations of 
widely used tests, the current findings serve as a valuable reference for 
analysts, students, and researchers striving for accurate statistical inference 
in the face of non-normal data structures. 
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