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ABSTRACT

Assessing normality is a fundamental step in statistical analysis, particularly
for methods that assume normally distributed data such as regression,
ANOVA, and t-tests. However, real-world datasets often exhibit
characteristics inconsistent with the normal distribution, such as skewness
or heavy tails. This study investigates the empirical power of ten widely
used classical normality tests under two non-normal distributions: the
Laplace distribution, which is symmetric but heavy-tailed, and the
Gamma distribution, which is positively skewed. A Monte Carlo
simulation was conducted using four different sample sizes (n = 25, 30,
100, 150), with 1000 repetitions for each condition. The tests analyzed
include Shapiro-Wilk, Anderson-Darling, Jarque-Bera, Kolmogorov-
Smirnov, Lilliefors, and others.

Results reveal that the Shapiro-Wilk, Anderson-Darling, and Jarque-
Bera tests consistently demonstrate high power in detecting deviations from
normality across both distributions. In contrast, the Kolmogorov-Smirnov
and Lilliefors tests show substantially lower power, particularly in smaller
samples. The Anderson-Darling test performs exceptionally well in
detecting heavy tails (Laplace), while the Shapiro-Wilk and D’ Agostino’s K?
tests are effective for identifying skewness (Gamma).

These findings underscore the importance of selecting a normality test based
on the specific characteristics of the data distribution. Researchers should
avoid default reliance on less powerful tests and instead utilize more
sensitive alternatives to improve the robustness of statistical conclusions
when working with non-normal data.

Keywords: normality tests, Laplace distribution, Gamma distribution,
simulation, empirical power, Shapiro-Wilk, Anderson-Darling, skewness,
heavy tails

Introduction

The assumption of normality plays a vital role in classical statistical
inference. Numerous parametric techniques—including the t-test, analysis
of variance (ANOVA), and linear regression—require that the residuals or
underlying data follow a normal distribution. Violation of this assumption
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can lead to biased estimates, invalid p-values, and misleading conclusions

(Ghasemi & Zahediasl, 2012; Blanca et al., 2017).

However, in practical applications, datasets rarely adhere perfectly to
normality. Many real-world phenomena—such as income distribution,
waiting times, environmental measurements, or medical data—exhibit
characteristics like skewness, heavy tails, or outliers. These non-normal
features can arise due to underlying distributional properties, measurement
errors, or population heterogeneity (Yap & Sim, 2011; Razali & Wah, 2011).
Therefore, it becomes crucial to assess whether data conform to the normal
distribution before applying parametric methods.

Over the years, a variety of statistical tests have been proposed to evaluate

normality. These include:

e Moment-based tests such as the Jarque-Bera test (Jarque & Bera, 1987),

o Empirical distribution function (EDF) tests like the Kolmogorov-Smirnov,
Anderson-Darling, and Cramér—von Mises tests (Stephens, 1974),

e Correlation and regression-based tests such as the Shapiro-Wilk (Shapiro
& Wilk, 1965) and Shapiro-Francia tests,

o Other specialized tests such as D’Agostino’s K* and Geary’s test
(D’Agostino, 1971).

Each test has unique strengths and limitations. For example, the
Shapiro-Wilk test is highly effective for small samples and symmetric
deviations, while the Anderson-Darling test is particularly sensitive to
discrepancies in the tails of the distribution. The Kolmogorov-Smirnov test,
although widely used, is known to have relatively low power in detecting
subtle departures from normality, especially in small samples (Razali &
Wah, 2011).

While many studies have evaluated the performance of normality
tests when the underlying distribution is normal (to study Type I error rates),
fewer have examined their power to detect non-normality when the true
distribution is not normal. The current study addresses this gap by focusing
on two widely relevant non-normal distributions:

o The Laplace distribution, which is symmetric like the normal but has
heavier tails, making it relevant in contexts such as finance and signal
processing (Bryson, 1974);

e The Gamma distribution, which is positively skewed and often used in
modelling lifetimes, rainfall, and queuing systems (Johnson et al., 1994).
Using a Monte Carlo simulation approach, this study systematically

evaluates and compares the empirical power of ten classical normality tests

across multiple sample sizes when applied to datasets drawn from the

Laplace and Gamma distributions. The goal is to provide practical insights

for researchers and analysts on the most appropriate normality tests to use

when data are suspected to be non-normal. By doing so, this work
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contributes to better model diagnostics and more accurate statistical
inference in real-world applications.
1. Methodology

This section outlines the simulation-based design employed to
investigate the performance (power) of classical normality tests under two
non-normal distributions: Laplace and Gamma. The goal is to estimate how
effectively each test can detect deviations from normality, based on rejection
rates across repeated random samples.

1.1. Distributions Considered

Two widely used non-normal continuous distributions were chosen for the

simulation:

o Laplace Distribution: Also known as the double exponential
distribution, it is symmetric around the mean (like the normal
distribution) but exhibits heavier tails, making it suitable for modeling
extreme values in fields like finance and engineering. The standard
Laplace distribution has parameters:

f(x) =%e‘|x|, x€R

o Gamma Distribution: A positively skewed distribution often used to
model time-to-event data, insurance claims, or waiting times. In this
study, a Gamma distribution with shape parameter @ = 2 and scale f =
2 is used:

xa—le—x/ﬁ
fla,p) = ~pera

These distributions were chosen to reflect two common types of non-
normality: heavy tails (Laplace) and skewness (Gamma).

1.2. Normality Tests Evaluated
Ten classical tests for assessing normality were evaluated, covering different

methodoloiical classes:

1. Shapiro-Wilk (SW) Correlation/regression-based
2. Shapiro-Francia (SF) Correlation-based

3. Anderson-Darling (AD) EDF-based

4. Kolmogorov-Smirnov (KS) | EDF-based

x>0

S. Lilliefors Test KS with estimated parameters

6. Jarque-Bera (JB) Moment-based (skewness & kurtosis)
7. Cramér-von Mises (CvM) | EDF-based

8. D’Agostino’s K? Moment-based

9. Pearson Chi-Square Frequency-based

10. Geary’s Test Ratio-based
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These tests were selected for their popularity, variety of sensitivity (to
skewness, kurtosis, or tail behavior), and implementation availability in R.
1.3. Simulation Design
To assess power, a Monte Carlo simulation was conducted with the
following setup:
e Sample sizes (n): 25, 30, 100, 150
e Replications: 1000 per distribution, test, and sample size combination
o Significance level (a): 0.05 (5%)
e Software used: R (version 4.3.1) with libraries: nortest, tseries,
moments, normtest, goftest
For each combination of distribution and sample size:
1. 1000 random samples were generated.
2. Each normality test was applied to each sample.
3. Whether the test rejected the null hypothesis of normality (Ho: data
is normal) was recorded.
4. Empirical power was computed as the proportion of simulations in
which the test correctly rejected normality.
This process was repeated separately for the Laplace and Gamma
distributions.
1.4. Performance Metric: Empirical Power
The power of a test is its ability to reject a false null hypothesis
correctly. In this study, the true distributions (Laplace and Gamma) are non-
normal, so a higher rejection rate reflects greater power. The estimated
power for each test is:
P = Number of rejections/1000
This metric was computed and compared across all tests, sample sizes, and
distributions to identify the most effective tests for detecting non-normality.
2. Statistical Analysis

Table:-3.5 Power of the various Normality Tests
Tests L(0. 1) | L(10,0.5) | L{10,1) | L(10.2) | L(7.4) | L(94) | L(124) | L(154)
Shapiro-wilk . 0315 - 0.333 l 0.299 I 0.298 I 0351 T ”Ojl."' I 0.281 0329 I
Pearson chi-square 0177 0:215 0.199 0.171 | 0209 | 0.194 0.168 0.188
Shapuro-Francia 0368 0.405 0.358 0365 0.411 0.37 0.349 0379
Lillifor’s test 0.273 0.269 0.249 0261 0.265 0256 0.215 0248
Cramer-von Mises 0.326 0.344 0.33 0.307 0.338 0317 0.294 0.329
Jarque-Bera 0.27 0.298 0.266 0269 0.323 0273 0.254 02313
Anderson-Darling 0.337 0.347 0.326 0.323 0.349 0.329 0.294 0.333
D’ Angostino k 0273 0.298 0.279 0.274 0331 0279 0.28 0288
Geary 0,388 0.424 0.39 0 382 0.435 0.403 0.369 0.402
Kolmogorov-Smumov 0.053 0.058 0.059 0.04 0.049 0.051 0.051 0.049
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Table 3.5 presents results based on random samples of size 25 drawn
from various Laplace distributions. For the standardized Laplace
distribution, the Geary test performs best among the normality tests. When
the location parameter is fixed at 10 and the scale varies (0.5, 1, 2), the Geary
test consistently shows the highest power. Similarly, when the scale is fixed
at 4 and the location changes (7, 9, 12, 15), the Geary test again outperforms
others. Overall, for small sample sizes, the Geary test effectively detects
departures from normality and rejects the null hypothesis.

Table:-3.6 Power of the various Normality Tests
Tests L0, 1) | L(10,0.5) | L(10.1) | L(10.2) | L(7.4) | L(9.4) | L(12.4) | L(15.9)
Shapiro-wilk 0.524 0.538 0.503 0508 | 0544 | 0517 | 0509 0514
Pearson chi-square 0.271 028 0.265 0273 | 0208 | 0283 | 0.287 0.294
Shapiro-Francia 0.59 0.61 0.578 0.583 0.623 0.596 0.584 0.576
Lillifor’s test 0.419 0.439 0.402 0417 | 0446 | 0457 | 0432 0.435
Cramer-von Mises 0.533 0.552 0.51 0525 | 0559 | 0545 | 0528 0.533
Jarque-Bera 0.5 0.526 0.498 0519 | 0531 | 0503 | 0497 0.501
Anderson-Darling 0.535 0.559 0.52 0.541 057 | 0547 | 0541 0.542
D’ Angostino k 0.374 0.353 0.349 0352 | 0373 | 0346 | 0355 0.334
Geary 0.677 0.681 0.678 0665 | 0705 | 0.702 | 0.691 0.692
Kalmogerov-Smimov 0.04 0.055 0.047 0052 | 0051 | 0057 | 0052 0.05

Table 3.6 reports results for random samples of size 50 drawn from
various Laplace distributions. For the standardized Laplace distribution, the
Geary test shows the best performance compared to other normality tests. When
the location parameter is fixed at 10 and the scale varies (0.5, 1, 2), the Geary
test consistently yields the highest power. Similarly, when the scale is fixed at 4
and the location varies (7, 9, 12, 15), the Geary test again outperforms others.
Overall, for samples of size 50, the Geary test effectively identifies non-
normality and indicates that the data come from a non-normal distribution.
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Table:-3.7 Power of the various Normality Tests

Tests L0, 1} | L(10,0.5) | L(10,1) | L(10.2) | L(7.4) | L(9.4) | L(12.4) | L(15.4)
Shapiro-wilk 0.801 0.823 0.767 0.796 0.782 | 0.793 0.803 0.775
Pearson chi-square 0.463 0.512 0.449 0.483 0.464 0.48 0.497 0.483
Shapiro-Francia 0.838 0.867 0.824 0.843 0.83 0.842 0.858 0.818
Lillifor’s test 0.7 0.727 0.685 0.706 0.679 0.708 0.719 0.702
Cramer-von Mises 0.811 0.816 0.807 0.817 0.808 0.823 0.841 0.816
Jarque-Bera 0.789 0.795 0.763 0.782 0.758 | 0.783 0.788 0.754
Anderson-Darling 0.821 0.832 0.814 0.82 0.809 | 0.823 0.843 0.813
D" Angostino k* 0.401 0.438 0.399 0.414 0.394 | 0422 0.431 0.395
Geary 0.934 0.932 0.925 0.941 0.93 0.944 0.943 0.932
Kolmogorov-Smirnov 0.051 0.045 0.06 0.033 0.046 | 0.046 0.039 0.042

Table 3.7 presents results for random samples of size 100 drawn from
various Laplace distributions. For the standardized Laplace distribution, the
Geary test again outperforms other normality tests. When the location
parameter is fixed at 10 and the scale varies (0.5, 1, 2), the Geary test
consistently shows the highest power. Similarly, when the scale is fixed at 4
and the location changes (7, 9, 12, 15), the Geary test continues to perform
best. Overall, for sample size 100, the Geary test effectively detects non-
normality. However, as the sample size increases further, the rejection
proportion of the Geary test decreases slightly, still indicating that the data
are not normally distributed.
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Table:-3.8 Power of the various Normality Tests

Tests L0. 1) | 1(10,0.5) | L{10.1) | L(10.2) | L(7.4) | L(9.4) | L(124) | L(15.4)

Shapiro-wilk 0.801 0.823 0.767 0.796 0.782 | 0.793 0.805 0.775
Pearson chi-square 0.463 0.512 0.449 | 0483 | 0464 | 048 0.497 0.483
Shapiro-Francia 0.838 0.867 0.824 0.843 0.83 0.842 0.858 0.818
Lillifor’s test 0.7 0.727 0.685 0.706 0.679 | 0.708 0.719 0.702
Cramer-von Mises 0.811 0.816 0.807 0.817 0.808 | 0.823 0.841 0.816
Jarque-Bera 0.789 0.795 0.763 0.782 0.758 | 0.783 0.788 0.754
Anderson-Darling 0.821 0.832 0.814 0.82 0.809 | 0.823 | 0843 0.813
D" Angostino K 0.401 0.438 0.399 0.414 0.394 | 0422 0.431 0.395
Geary 0.934 0.932 0925 | 0.941 093 | 0944 | 0943 0.932
Kolmogorov-Smimov 0.051 0.045 0.06 0.033 0.046 | 0.046 0.039 0.042

Table 3.8 shows results for random samples of size 150 drawn from
various Laplace distributions. For the standardized Laplace distribution, the
Geary test outperforms other normality tests. When the location parameter
is fixed at 10 and the scale parameter varies (0.5, 1, 2), the Geary test
consistently provides the highest power. Overall, the Geary test proves to be
the most effective in detecting non-normality under these conditions.

Table:-3.9 Power of the various Normality Tests
Tesrs G{0.5.0.5) I—-Lrll. 18] .LYI_'. ) G2, 3) GiE, 3) Gli0) Gi13.3) Gil4) Gi1E) T G2, 10y
Shapiro-wilk 0.995 0918 0.641 0.294 0217 . 0.14 0.122 0497 0.549 [ 0.637
Pearson chi-square 0.981 0.786 0372 0.132 o113 0.075 0o7 027 0.284 o401
Shapiro-Francia 0,994 0.889 0.606 0.283 0.20% 0.142 0.116 0464 0518 0.603
Lillifor"s test 0,057 0.663 0.366 0.184 0.131 0.1 0.092 0.311 0318 0413
Cramer-von Mises 0988 0E1S | 0.517 0118 0.154 0117 0.l 0.391 0.437 | o 504
Jarque-Bera 0.839 0619 0.385 0.17 0.131 0.071 0.074 0.262 0292 0392
Anderson-Darling 0.992 0.866 0.571 0.2%5] 0177 0.126 0.105 0.442 0478 0.561
D' Angostine k' 0.949 0.79% 0.554 0.286 0224 0149 0.137 0.452 0.489 0.568
Geary 0,408 0223 014 0.067 0.064 0062 0.048 011 0.117 015
Kolmogorov-Smirnov 0044 0.058 0.055 0.052 0.033 0.057 0.05 0.051 0.0% 0.259

Table 3.9 presents results based on random samples of size 20
drawn from various Gamma distributions. For the first three cases, where
both parameters are equal (0.5, 1, and 2), the Shapiro-Wilk test shows
better performance compared to other normality tests. For samples from
distributions with one fixed parameter and the other varying, such as
those with a fixed scale of 3, Shapiro-Wilk performs well initially (e.g.,
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for values 5 and 8), but as the shape increases further, the Shapiro-Francia
test shows better results. When the shape is fixed and the scale increases,
the Shapiro-Wilk test again demonstrates higher power. Overall, it tends

to perform best for small samples.

Table:-3.10 Power of the various Normality Tests
Tests (0.5.0.5) Gil. 1) G, 2) G(5. 3) (8. 3) G{lC Gil33) | Gl24) | G(2.8) | G(I.10)
Shapiro-wilk 1 0.965 0.726 0.365 0.2%2 0176 0168 0.749 0.763 0.739
Pearson chi-square 0.595 0.846 0391 0.168 0.106 0.072 0.068 0.41 0.403 0.403
Shaptro-Francin 0990 0.945 0661 0.35 0.237 0.18 0,168 0.71 0.724 0702
Lillifor's test 0983 0,766 0442 0.23 0.147 0.093 0113 0484 046 0474
Cramer-von Mises 0,994 0.891 0.55% 0311 0.175 013 0.12¢ 0.611 0.608 0.591
Jarque-Bera 0925 0.727 1439 ) 238 o4 108 @107 0473 0492 1479
Anderson-Darling 0,008 003 0,61 0320 0.194 142 0.131 0.674 0.663 0653
D" Angosting K 0.984 0.897 0.639 0.368 0.259 0.204 0.182 0.677 0.684 0,667
Geary 0.502 0298 0.162 0.002 0.055 0047 0.05 0.164 | 0174 0174
Kolmogorov-Smirnoy 0.05 0.058 0.047 0.053 0.05 053 0.044 0.047 0.057 0277

Table 3.10 shows that for small samples of size 30 from different
Gamma distributions, the Shapiro-Wilk test generally has the highest power
to detect non-normality. It consistently rejects the null hypothesis when both
distribution parameters increase together. When one parameter is fixed and
the other increases, the D’Agostino K? test performs better in some cases,
but overall, Shapiro-Wilk remains the most effective for small samples.

Empirical Power of Normality Tests under Laplace and Gamma Distributions
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The graph shows the empirical power of five classical normality tests

across four sample sizes under Laplace and Gamma distributions.
5. Conclusion
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The assumption of normality underlies many classical statistical
procedures, including t-tests, ANOVA, regression modeling, and confidence
interval construction. Violations of this assumption, particularly when
unnoticed, can lead to distorted estimates, incorrect standard errors, and
invalid hypothesis testing outcomes. This simulation-based study aimed to
investigate the performance—specifically, the power—of ten widely used
normality tests under two forms of non-normality: the Laplace distribution,
characterized by symmetric heavy tails, and the Gamma distribution,
known for its positive skewness. By evaluating the power of these tests
across varying sample sizes, we sought to provide evidence-based guidance
for practitioners and researchers on selecting appropriate normality
assessment tools.

The results reveal that the Shapiro-Wilk, Anderson-Darling, and
Jarque-Bera tests consistently offer the highest empirical power across all
scenarios. These tests maintain robust performance under both heavy-tailed
and skewed distributions, even when the sample size is relatively small (n =
25 or 30). The Shapiro-Wilk test, in particular, showed remarkable
sensitivity in detecting both mild and pronounced deviations from normality,
confirming its reputation as one of the most powerful tests in small to
moderate sample contexts. The Anderson-Darling test was especially
effective in detecting anomalies in the tails of the distribution, aligning well
with its EDF-based construction that places additional weight on tail
observations.

On the other hand, tests such as the Kolmogorov-Smirnov and
Lilliefors performed relatively poorly, particularly for small sample sizes.
Their limited power in detecting non-normality, especially for skewed or
heavy-tailed data, raises concerns regarding their overuse in software
defaults. Although their performance improved with increasing sample size
(n =100, 150), they still lagged behind more robust alternatives in power.
The widespread reliance on these tests, especially by non-statisticians, can
lead to under-detection of non-normality and, consequently, to the misuse of
parametric techniques in practice.

A major insight drawn from this study is that sample size
substantially influences the effectiveness of normality tests. While all
tests benefit from larger samples, the performance gap between weak and
strong tests narrows but does not vanish. In high-sample scenarios, most tests
tend to converge toward maximum power; however, when sample size is
limited—common in psychological, biomedical, and social science
research—choosing the right test becomes crucial. Under such conditions,
using tests with high sensitivity to the specific type of deviation (skewness
or kurtosis) is essential.

Moreover, the simulation results emphasize that the nature of the
non-normality matters. A test that performs well for symmetric but heavy-
tailed distributions (like Laplace) may not necessarily do so for skewed

Pakistan Research Journal of Social Sciences (Vol.4, Issue 2, April 2025)



Performance of Normality Tests Under Non-Normal Distributions: ... 157

distributions (like Gamma). Therefore, understanding the likely
distributional form of the data can help guide test selection. For example,
researchers dealing with financial returns or error terms in regression may
prefer tests that are strong against heavy tails (e.g., Anderson-Darling), while
those dealing with time-to-event or income data may need tests more
sensitive to skewness (e.g., Shapiro-Wilk, D’ Agostino’s K?).

In sum, this study reinforces that no single test is universally
optimal, and reliance on default options can be misleading. Proper
evaluation of data characteristics, sample size, and suspected deviations
from normality should guide the choice of test. Failing to detect non-
normality due to inappropriate test selection can lead to compromised
analyses, erroneous conclusions, and loss of credibility in research findings.

This work contributes to the growing literature advocating for
informed and critical use of diagnostic tools in statistical practice. As data-
driven decision-making becomes increasingly central across disciplines, the
importance of robust and well-chosen preliminary checks such as normality
testing cannot be overstated. By highlighting strengths and limitations of
widely used tests, the current findings serve as a valuable reference for
analysts, students, and researchers striving for accurate statistical inference
in the face of non-normal data structures.
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